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ABSTRACT 

This paper proposes a methodology for mapping structural damage onto building 

frames due to exterior blast threats for use in a threat dependent progressive collapse 

assessment. The proposed approach contrasts with current practice, which typically relies 

on a threat-independent approach for progressive collapse analysis. Damage is mapped to 

the structure based on the calculated response of the discrete structural components 

(particularly the columns) to a blast-induced pressure time history. Contours of structural 

damage can then be mapped over the building face for discrete combinations of charges 

and standoffs. For a prototype reinforced concrete building frame, calculated distributions 

of damage for conventional explosive threats suggest that the current state of practice 

approach (in which damage is represented with a single column removal) may not 

constitute a generally conservative strategy for progress collapse resistant design. A set of 

uniform pushdown progressive collapse analyses was performed to assess the robustness 

of the prototype building frame when subjected to a spatial distribution of blast-induced 

damage relative to its intended design loads. The proposed framework can be used to 

determine standoff distances needed to reduce progressive multi-column failure scenarios 

in building frames for high-risk facilities and can be used as input for a progressive collapse 

assessment of these frames.  
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INTRODUCTION 

In recent years, acts of domestic and international terrorism have resulted in the 

notable damage and/or collapse of several structures. Though relatively infrequent, blast 

or impact hazards due to terrorism can yield extensive amounts of property damage and, 

more importantly, loss of human life. Blast hazards are characterized by large local 

intensity, and the resulting damage has a high potential to cause a disproportionately large 

degree of structural collapse. Since the risk of terrorism is generally lower than that of 

natural disasters, buildings with higher damage consequences are the most appropriate 

candidates for the implementation of special mitigation strategies (Stewart 2008). Both the 

load and the resulting response due to intentional blast threats carry large degrees of 

uncertainty due to their extremely dynamic nature, the unpredictability of the location and 

magnitude, and the intelligent adaptability of the aggressors (Stewart et al. 2006). 

Increased recognition of these levels of uncertainty within the construction industry 

has spurred the implementation of threat-independent approaches for mitigating 

progressive collapse due to local damage. Progressive collapse is defined as the “spread of 

an initial local failure from element to element, resulting eventually in the collapse of an 

entire structure or a disproportionately large part of it” (ASCE 2010). The current 

methodologies published by the US Government (GSA 2013; DoD 2013b) effectively 

decouple the direct effects of the loads which induce local damage from the performance 

of the locally damaged structure. The most common design approach used to mitigate the 

effects of progressive collapse is the alternate path method (APM), in which a structure is 

designed to bridge over its locally damaged portions. When using APM for building 

frames, the structure is subjected to the instantaneous removal of a single one-story column 
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at several critical locations; the system is then analyzed to determine if the remaining 

structure is able to “bridge” over the removed column and avoid collapse (see Figure 1). 

The column is notionally removed without any correlation to a potential hazard that caused 

its removal, and the remainder of the structure is considered to be undamaged. If the 

structure can redistribute its gravity loads in accordance with specified performance limits 

after the column removal, it is then considered to be resistant to progressive collapse. The 

use of APM to resist collapse due to simultaneous damage in multiple columns (unless they 

are in very close proximity) is not considered as a design objective in current guidelines 

(GSA 2013; DoD 2013b). 

 
Figure 1 - Single column removal scenario for APM analysis 

The question is often raised as to whether the single column removal with no 

damage to neighboring elements provides a realistic representation of structural damage 

due to a specified hazard.  For the case of impact from a truck or small aircraft, the loss of 

a single column may be a reasonable representation. For the case of a blast load, however, 

damage could potentially result in critical or partial damage to two or more columns based 

on the size and location of an explosive threat. If such threats are considered credible design 
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scenarios for the building of interest, the extent of their blast effects may defeat the 

mitigation implemented via the APM, thus rendering the structure susceptible to 

progressive collapse. The potential for damage patterns that are not consistent with the 

single column removal has generated increased interest in the implementation of a threat-

dependent progressive collapse analysis approach (Myers and Crawford 2014). 

This paper examines the potentially unconservative nature of the single column 

removal for progressive collapse resistant design when considering the damage patterns 

created by blast loads. The proposed threat-dependent approach first generates contours of 

blast demands on the building envelope resulting from an explosive threat located at ground 

level outside the building. Columns are more susceptible than floor systems to exterior 

blast loads, and their blast-induced response (and potential resulting damage) is therefore 

the focus of this paper. The blast pressure time history experienced by each column is 

individually calculated based on its standoff and orientation to the specified explosive 

charge, which is represented in equivalent weight of TNT. Damage levels are calculated 

by comparing the reflected pressure (Pr) and impulse (Ir) at each column with its P-I 

resistance function, which is obtained using industry standard blast design tools (USACE 

2008). When neighboring columns are examined together, the collective damage pattern 

enables an evaluation of the relevance of the single column removal scenario. This study 

uses a prototype building frame constructed of reinforced concrete but may be easily 

modified to accommodate other systems, including precast concrete and structural steel. 

The proposed framework can be used to determine appropriate standoff distances needed 

to prevent multi-column damage scenarios due to design basis blast threats. 



www.manaraa.com

 

5 

BACKGROUND 

Current US Government design guidelines for progressive collapse resistance 

(GSA 2013; DoD 2013b) have been developed in response to several recent events, in 

particular the 1995 bombing and collapse of the Murrah Federal Building in Oklahoma 

City, OK (Mlakar et al. 1998). The extent of blast-induced structural damage to the Murrah 

Building highlighted the need for redundancy and alternate load paths to resist progressive 

collapse (Byfield and Paramasivam 2012). Following their forensic investigation of the 

Murrah Building’s collapse, Corley et al. (1998) noted that special moment frame or 

compartmentalized construction would have a greater ability to resist progressive collapse.  

Special moment frame detailing, in particular, was recommended as a method to mitigate 

both the damage due to the initial blast as well as the potential for subsequent collapse from 

blast-induced local damage (Corley et al. 1998). 

In current practice, progressive collapse resistant design is typically performed via 

the APM direct design approach for several damage scenarios. To simulate each scenario, 

a column is removed one at a time in one-story lengths at several plan and elevation 

locations. When a column is removed, beam-to-beam continuity over that column is 

assumed to be preserved (see Figure 1), and no other damage is imparted to the structure. 

The structure is iteratively analyzed and strengthened for each removal scenario until the 

prescribed performance limits are met. The current threat-independent APM approach 

provides design professionals with a straightforward procedure in which the robustness of 

the structure is presumably increased. Nair (2006) explored a collection of 

recommendations from government standards and design guides for their significance on 

progressive collapse mitigation; all of the approaches included in that review did not 
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explicitly include the hazard which causes the initial damage. To implicitly consider the 

threat, the current criteria documents state that they are to be used in conjunction with the 

relevant blast-resistant design criteria that are associated with that agency and the 

building’s level of design (GSA 2013; DoD 2013b). 

Since the Murrah Building investigation, researchers have increasingly suggested 

that the single column removal scenario (with no other structural damage whatsoever) may 

not be representative of the damage pattern produced by a realistic blast threat. The results 

of the Murrah investigation (Mlakar et al. 1998) indicated that multiple columns failed due 

to the 1995 blast. However, the investigation suggested that the use of special moment 

frame detailing would have prevented all but one of the columns (G20) from failing 

suddenly due to the initial blast (Corley et al. 1998). Research by Bao and Li (2010), which 

examined the post-blast residual axial capacity of reinforced concrete columns, confirmed 

that the implementation of seismic detailing increased the column resistance to blast effects 

and, by extension, decreased the potential for progressive collapse. 

The results of the Murrah Building investigation (Corley et al. 1998; Mlakar et al. 

1998), however, did not consider whether the damaged columns which survived the blast 

would have been able to carry the redistributed loads from the failed column to resist 

progressive collapse. Kazemi-Moghaddam and Sasani (2015) recently revisited the event 

and performed an analytical study in which column G20 was removed suddenly but the 

remainder of the structure was undamaged. The results suggested that the structure would 

have resisted progressive collapse if only a single column had been removed due to the 

rapid dissipation of axial load in the column directly above the removal as well as load 

redistribution through Vierendeel action in the adjacent framing. This study indicated that 
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the initial blast-induced damage to the Murrah Building must have been more severe than 

a sudden removal of only a single column, thereby confirming the conclusions of the initial 

investigation (Corley et al 1998). Collectively, these studies suggest that a holistic 

evaluation of the progressive collapse potential of a building structure may not be possible 

without an evaluation of the extent of damage due to potential blast threats. 

In the last decade, multiple research studies have expanded beyond the one column 

removal to consider the collapse consequences of a wider, more realistic extent of blast-

induced damage. Studies by Sasani (2008) and Sasani et al. (2011) have examined the 

collapse resistance of building structures using damage scenarios with the removal of more 

than one column. These studies were performed under the assumption that a realistic blast 

threat may cause more extensive initial damage than considered by the current guidelines. 

However, the effects of the blast (particularly the damage caused to the neighboring 

elements) are not explicitly considered, similar to the aforementioned study by Kazemi-

Moghaddam and Sasani (2015). 

According to Starossek and Haberland (2010), the probability of the occurrence of 

progressive collapse is defined as a function of structural robustness, component 

vulnerability, and building exposure. Though convenient in its implementation, the current 

state of practice only addresses the influence of building robustness on the risk of collapse. 

To better address all three aspects of the collapse risk, several recent studies of progressive 

collapse resistance have explicitly incorporated the vulnerability and extent of damage for 

structures subjected to blast loading. McConnell and Brown (2011) performed an analytical 

study to monitor the response and progressive collapse vulnerability of steel columns 

subjected to the direct effects of blast loading for three failure criteria: stability, yielding, 
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and fracture. The results showed that the removal of only one column is highly non-

conservative when designing for the possible effects of large charge sizes and that the 

alternative load path method for progressive collapse analysis is generally representative 

of relatively small charge sizes. Quiel et al. (2015) developed a correlation between the 

intensity of blast loading, the measure of collapse consequence to the building frame, and 

the extent of potential post-blast damage. The framework proposed in that study quantified 

the increasing extent of blast damage for a range of increasing charge sizes and/or 

decreasing standoffs, with the goal of identifying damage scenarios that extend beyond a 

single column removal.  For a reinforced concrete frame, Shi et al. (2010) calculated the 

response of columns adjacent to those that were removed; by showing that their initial 

conditions were non-zero, the study demonstrated that removing a column is not a static 

case since some adjacent columns were not completely unaltered. Other studies such as 

Luccioni et al. (2004), Asprone et al. (2010), and Kelliher and Sutton-Swaby (2012) have 

also assessed the potential for structural collapse based on the extent and severity of 

damage produced by a range of blast threat locations and intensities. 

PROPOSED FRAMEWORK 

In order to assess the extent of blast-induced damage to a building frame as input 

for a progressive collapse analysis, a threat-dependent procedure has been developed by 

the authors. The flowchart shown in Figure 2 depicts the proposed five-step framework. 

The building frame is first designed in step 1 for conventional loads, followed by 

assessments of the structure’s capacity to resist blast loads in step 2. The blast hazard is 

then assessed in step 3, and the corresponding blast-induced damage states are determined 
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in step 4. Steps 1-4 provide the initial conditions needed to conduct a progressive collapse 

analysis of the building in step 5. 

The proposed framework ultimately determines the damage state at the end of the 

blast phase for each column on the building perimeter when exposed to a known explosive 

charge size at a given standoff distance. The damage states for all perimeter columns can 

be plotted as contours over the surface of a reinforced concrete building frame to visually 

represent the extent of damage and facilitate an assessment of the applicability and 

conservatism of the one column removal approach. A similar damage mapping technique 

was used by Netherton and Stewart (2009) to examine the extent of blast-induced damage 

and associated safety hazards for window glazing. 
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Figure 2 - Proposed threat-dependent framework for evaluating collapse resistance 



www.manaraa.com

 

11 

Step 1: Design 

For new construction, the proposed framework begins with the selection of the 

building’s location and site layout as well as function and/or occupancy. Together, these 

characteristics establish the risk of having an intentional or accidental blast as well as the 

magnitude and proximity of a blast event. In this study, a generic site location and layout 

is chosen such that any magnitude or location of a blast threat is possible. The building is 

then designed for gravity loads as well as relevant loads resulting from natural hazards (e.g. 

earthquake, wind, flood, snow, etc.) in accordance with the International Building Code 

(ICC 2012) and ASCE 7-10 (ASCE 2010). When required, blast resistant design in 

accordance with government criteria (DoD 2013a) could also be performed during this 

step. For an existing building, this step would involve the acquisition of structural drawings 

and an evaluation of the as-built conditions needed for subsequent steps. 

Step 2: Capacity Assessment 

To determine a threat-dependent response of a reinforced concrete frame subjected 

to blast, the modes of damage must be defined. Assuming that the integrity of the beams is 

maintained by the adjacent floor diaphragms, the focus can be placed on the columns. 

Three potential modes are identified: breach, flexure, and direct shear. 

Breach Resistance 

Breach of a concrete column is defined as the complete loss of concrete through the 

depth of a cross-section (Williamson et al. 2010). Since this produces a through-thickness 

failure, breach is evaluated before the flexure and direct shear response criteria. Due to the 

large concentrated pressures required to breach a reinforced concrete member, this failure 

mode is commonly associated with close-in blast demands. 
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To quantify the breach potential of a reinforced concrete frame, the empirical 

breach threshold curve equations, shown as Equations (1), (2), and (3), were adopted from 

UFC 3-340-02 (DoD 2014). 

 ℎ

𝑅
=

1

𝑎 + 𝑏𝛹 + 𝑐𝜓2
 

(1) 

 
𝜓 = 𝑅0.926𝑓′𝑐0.266𝑊𝑎𝑑𝑗

−0.353 (
𝑊𝑎𝑑𝑗

𝑊𝑎𝑑𝑗 + 𝑊𝑐
)

0.333

 
(2) 

 𝑊𝑎𝑑𝑗 = 𝐵𝑓𝐶𝑓𝑊 (3) 

The equations use English units where h is the depth of the column in ft; R is the charge 

standoff distance in ft; a, b, and c are constants equal to 0.028205, 0.144308, and 0.049265, 

respectively; f’c is the compressive strength of concrete in psi; Wc is the explosive casing 

weight in lb, if applicable; Bf is equal to 1.0 for surface bursts; Cf is equal to 1.0 for spherical 

charges; and W is the equivalent TNT charge weight in lb. Given a column with known 

geometric and material properties, the greatest standoff distance at which breach can occur 

for a given quantity of TNT can be calculated. The corresponding scaled distance is used 

to determine the reflected pressure and impulse value at that point. Breach threshold curves 

can be developed for each column type as a function of TNT charge weight, pressure, and 

impulse, allowing for rapid assessment of performance. A specific example of this will be 

shown later in this paper. 

Flexural Resistance 

Flexural performance is assessed using standardized resistance functions (DoD 

2014) and a generalized single degree of freedom (SDOF) analysis approach as discussed 

in Biggs (1964). Each column is equated to a mass-spring system and is allowed only one 

translational degree of freedom in the horizontal (parallel to the ground) direction as shown 
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in Figure 3a. Axial load is accounted for and is based on the location of the column within 

the structure. Applied axial load typically increases the moment capacity of the column 

because the applied compression stress offsets some of the tension in the reinforcing 

steel caused by flexure. The compression stress also helps to delay the onset of cracking. 

Conversely, the eccentricity of the applied axial load typically increases the applied 

moment. Also, the combined action of the axial load (P) and the lateral midspan 

deflection caused by flexure () causes an additional applied moment known as the “P-

” moment. 

To consider a combination of axial load and dynamic inelastic lateral loading, an 

equivalent lateral load (ELL) approach is implemented. The approach consists of a 

time history analysis of the component that is subjected to blast loading. The axial 

load supplements the blast load with an ELL at each time step as shown in Figure 3b. This 

ELL represents an applied moment equal to the second-order moment from the “P-” 

effect, where P is the total applied static and dynamic axial load at the time step and is 

the maximum component deflection at the time step. The ELL is added to the blast load 

at the next time step. The ELL is calculated assuming the same load distribution as 

the input blast load (e.g. uniformly distributed pressure load) so that it can directly be 

added to the blast load. Figure 3c and 3d show the column modeled as an SDOF system with 

and without the inclusion of axial load effects, respectively. This approach allows for the 

inclusion of both static axial loads from gravity effects as well as the addition of dynamic 

axial demands, which are generated from the blast response of the roof component 

supported by the load-bearing component. The ELL method is accepted in classical theory 
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for analysis of load-bearing components with combined lateral load (Timoshenko and 

Gere 1961). 

For continuous frames, the columns can be modeled with fixed-fixed, fixed-simple, 

or simple-simple boundary conditions. The choice of boundary condition is dependent on 

the detailing of the system and the goal of the analysis (i.e., estimation of peak reactions or 

deformations). The choice of boundary conditions determines the number of hinges formed 

during loading. As an example of the progression of failure, a fixed-simple condition would 

allow for the formation of two flexural plastic hinges. For a member with uniform 

reinforcement and cross-section, the first plastic hinge forms at the fixed support as the 

highest moment will develop at that location. After this hinge has formed, the beam will 

exhibit reduced stiffness and will behave as simply-supported until the moment at midspan 

exceeds the plastic moment capacity. Figure 3e shows the order of plastic hinge formation 

used in the model. In the figure, R(x) is the resistance of the SDOF system as a function of 

displacement along the x-axis; M is the equivalent mass of the system; P(t) is the laterally 

applied reflective pressure load as a function of time, t; γDL and γLL are the factored dead 

and live floor loads, respectively; P2(t) represents any time dependent axial load; and e is 

the eccentricity of the applied floor load reaction on the column. 

 
Figure 3 - Structural component and equivalent SDOF spring-mass system with plastic 

hinge formation order 
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To evaluate the flexural limit states of the columns, response criteria were adopted 

from references published by the US Army Corps of Engineers (USACE 2008b). These 

limits are given in terms of ductility and effective support rotation. Ductility, μ, is defined 

as the ratio of the blast induced deflection to the yield displacement at midspan. Midspan 

displacement can also be normalized with respect to length of the member, converting it 

into an effective support rotation, θ, which is approximated by Equation (4). 

𝜃 = tan−1 2Δ

𝐿
  

(4) 

where Δ is the lateral deflection of the column at midspan, and L is the height of the column. 

Four response limits, B1 through B4, are summarized in Table 1. The physical 

interpretation of the damage levels bounded by these four response limits are defined in 

Table 2. 

Table 1. Flexural response limits for reinforced concrete elements (USACE 2008b) 

B1 B2 B3 B4 

μ θ μ θ μ θ μ θ 

1 N/A  N/A  4°  N/A  6° N/A   10° 
 

Table 2. Flexural damage level descriptions (USACE 2008b) 

Component 
Damage Level 

Relationship to Response 
Limits 

Description of Component Damage 

Blowout Response greater than B4 
Component is overwhelmed by the blast load 

causing debris with significant velocities  

Hazardous Response between B3 and B4 
Component has failed, and debris velocities 
range from insignificant to very significant  

Heavy Response between B2 and B3 
Component has not failed, but it has 

significant permanent deflections causing it 
to be unrepairable 
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Moderate Response between B1 and B2 

Component has some permanent deflection. 
It is generally repairable, if necessary, 
although replacement may be more 

economical and aesthetic  

Superficial Response is less than B1 
Component has no visible permanent 

damage  
 

Direct Shear Resistance 

If a column does not initially breach, its direct shear resistance is determined by 

examining the column’s dynamic rigid body motion which occurs prior to its flexural 

response. The rigid body motion behavior translates into a high concentration of shear 

stresses near the supports. To model the direct shear behavior of the columns, a resistance 

function relating shear stress to shear slip accounting for compression and rate effects was 

adopted from Krauthammer et al. (1986) and is shown in Figure 4. Using this model, the 

shear slip and resistance at each performance event is calculated and taken as a direct shear 

response limit for the column. As the column experiences greater shear slip the damage 

near the supports results in a reduction of stiffness. As the direct shear slip is currently 

uncoupled from the flexural behavior, the framework does not account for a reduction in 

flexural capacity caused by the slip induced weakening of the rigidity at the supports. 

Alternate methods for shear assessment were found to be unconservative and are 

not used in this framework. This includes the UFC 3-340-02 (DoD 2014) approach which 

allows for direct shear to be considered as a result of flexural behavior. The UFC method 

does not account for the rigid body motion prior to the onset of bending. Dragos et al. 

(2014) showed that flexural bending occurs as shear slip is being developed. This results 

in higher resistance to shear failure modes. For simplicity, and to be conservative, the shear 

response is decoupled from the flexural response and the rigid body approach is 
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implemented.  Future research will explore the interaction of shear slip with the ensuing 

flexural response. 

The critical values of shear slip, i.e. the values of shear slip at which the resistance 

curve changes slope as seen in Figure 4, were used as the response limits for direct shear. 

The formulae used to calculate the shear slip and corresponding shear stress for each 

response level are shown in Equations (5) through (11). The values of slip at the first three 

response limits are previously defined by Krauthammer et al. (1986) and are given as 0.1 

mm, 0.3 mm, and 0.6 mm for ΔDS1, ΔDS2, and ΔDS3 respectively. The other displacement 

limits are determined in accordance with Equations (9) and (11). 

𝜏𝐷𝑆1 = 231 + 0.220𝑓′𝑐 (5) 

𝜏𝐷𝑆2 = 11.2√𝑓′𝑐 + 1.12𝜌𝑣𝑡𝑓𝑦 ≤ 0.35 𝑓′𝑐 (6) 

𝜏𝐷𝑆3 = 𝜏𝐷𝑆2 (7) 

𝜏𝐷𝑆4 =
1.19𝐴𝑠𝑏𝑓𝑠

′

𝐴𝑐
s (8) 

Δ𝐷𝑆4 = Δ𝐷𝑆3 +
𝜏𝐷𝑆3 − 𝜏𝐷𝑆4

2000 + 0.75𝑓′𝑐
 (9) 

𝜏𝐷𝑆5 = 𝜏𝐷𝑆4 (10) 

Δ𝐷𝑆5 = 2 (
(𝑒𝑥) − 1

120
) , 𝑤ℎ𝑒𝑟𝑒 𝑥 =

900

2.86√
𝑓𝑐

′

𝑑𝑏

 
(11) 

ρvt is the longitudinal reinforcement ratio; f’c is the concrete compressive strength in psi; fy 

is the yield strength of rebar in psi; Asb is the area of primary tension reinforcement in 

square inches; fs
’ is the ultimate tensile strength of rebar in psi; Ac is the cross-sectional 

area of the column in square inches; and db is the rebar diameter in inches. The shear stress 

corresponding to each response level, i, is then multiplied by twice the cross sectional area 

(which accounts for both supports) of the member to obtain shear force, which is then 

divided by the tributary surface area of the member face to calculate the shear resistance, 
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RDSi, as shown in Equation (12), where Atrib is calculated using either Equation (14) or (15). 

The influence of axial load is accounted for by increasing the direct shear resistance 

function values in accordance with ACI 318 (2011) for members under axial compression, 

as shown in Equation (13) and modeled after work done by Astarlioglu et al. (2013), where 

R’DSi is the enhanced, axial load influenced direct shear resistance at response level, i; and 

Pu is the total factored column axial load. Since the total column axial load varies over the 

height of the building, a set of direct shear resistance values must be calculated for each 

building story. The resulting resistance function is then used as input for the dynamic 

analysis. 

 𝑅𝐷𝑆𝑖 =
2𝜏𝐷𝑆𝑖𝐴𝑐

𝐴𝑡𝑟𝑖𝑏
  (12) 

 𝑅′𝐷𝑆𝑖 = (1 +
𝑃𝑢

2000𝐴𝑐
) × 𝑅𝐷𝑆𝑖  (13) 

 
Figure 4 - Plot of direct shear slip resistance function showing the locations of response 

limits 
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Combined P-I Diagrams for Flexure and Direct Shear 

To quantify the response limits for both flexure and direct shear, pressure-impulse 

(P-I) diagrams are developed using the Single-Degree-of-Freedom Blast Effects Design 

Spreadsheet (SBEDS) (USACE 2008a). For the flexural mode, the SBEDS Reinforced 

Concrete Beam or Beam-Column component module is used to perform the SDOF 

analysis. Using SBEDS General SDOF Program, the SDOF analysis is performed for 

direct shear based on the resistance function described earlier. Since it is assumed that the 

member acts as a rigid body in this mode, all load mass factors are to be taken as unity. 

Since the direct shear slip will occur in the region of highest concentration of shear stresses, 

near the supports, the effective support rotation of the member can be evaluated at a 

distance, d, away from the supports where d is the distance from the top fiber of the member 

to the centroid of primary tension reinforcement. From this, effective support rotations can 

then be calculated based on each slip deformation level and used as the response limits 

when generating the direct shear P-I curves. 

The P-I curves for both flexure and direct shear are combined into one plot as was 

previously done by Wei et al. (2013). To account for overlap in the P-I limits of flexure 

and direct shear a funneling technique, similar to work done by Low and Hao (2002), was 

used. As shown in Figure 5, once a direct shear P-I curve intersects a flexure curve, the 

flexural curve (lower capacity curve) controls the response and supersedes the direct shear 

curve. In this sense, the response limits for direct shear are treated as intermediate 

performance levels before the next flexural response limit is reached. The behavior of the 

curves in Figure 5 is in accordance with the outcomes of a study by Xu et al. (2014), which 

showed that direct shear behavior dominates in the impulsive loading region and flexural 
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behavior dominates in the quasi-static response region. This approach decouples the shear 

and flexural responses by presuming that no modifications caused by direct shear damage 

contribute to the flexural response. Further research is needed to assess the effect of the 

direct shear slip on the flexural stiffness of the columns, as the boundary conditions may 

be altered as a result of direct shear damage. 

 
Figure 5 - Funneling of direct shear P-I curves (“DS”) into flexural P-I curves (“B”) 

Step 3: Hazard Assessment 

To ascertain the extent of blast-induced damage, the hazard consisting of an 

explosive charge weight and location must be determined. From this threat, incident and 

reflected pressure and impulse demands are computed on the exterior columns of the 

building. These values are determined at the base of each column (to evaluate breach) and 

at mid height (to evaluate flexure and direct shear) as illustrated in Figure 6. Flexural 

damage is evaluated at midspan since the lateral translation DOF is allowed at that location. 

Direct shear is also assessed at midspan since the shear stresses that develop in the column 

near its supports are caused by the rigid body motion of the entire member. Breach is 
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evaluated at the bottom of each column. This was done since the lower portion of each 

column is closest to the ground surface blast, breach is most likely to occur at that location. 

This theory is supported by a previous study by Osteraas (2006) which concluded that 

lower portions of perimeter columns should be designed, to the greatest extent possible, to 

resist the direct effects of blast. 

To assess the demands on the column a tributary area of the façade must be 

considered. The tributary geometry is dependent on the relative strength, stiffness, and 

connectivity between the façade and column. Several possible tributary regions are 

illustrated in Figure 6. Type A assumes that the pressure wave is only exerted on the front 

face of the column and thus no contribution from the cladding is considered. 

Implementation of this area may be warranted in cases where the cladding system is 

assumed to be frangible. Type B assumes that the distribution to the horizontal and vertical 

elements is based on 45-degree yield lines. Type C represents a simplified conservative 

approximation of B and assumes that a portion of the cladding system (specifically closer 

to the column face) will maintain sufficient structural integrity to exert a blast-induced 

reaction force on the columns. Type D assumes a two way action between the vertical and 

horizontal framing elements with a larger contribution going to the columns. Type E 

represents a case where the facade is only attached to the vertical elements. 

A mass tributary area, in addition to that used for pressure demand, must also be 

selected since a dynamic analysis will be performed on the column. The mass tributary 

area may be taken as the same as that used for pressure, or combinations of different types 

(A-E) may be used for mass and pressure. For example, a lightweight blast resistant 

cladding system (relative to the column mass) may warrant a larger pressure area relative 
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to that used for mass. Since this framework is designed to be compatible with any type of 

structure or cladding system configuration, the user may choose to implement the optimum 

tributary areas as they see fit for a specific case. The remainder of this study assumes that 

Types C and A are used for the pressure and mass, respectively. For Type C in this case, 

side dimensions of the tributary area are equal to the height of the column, hcol as shown in 

Equation (14). For corner columns, the tributary width is halved as depicted in Equation 

(15). Dimensions for Type A are that of the front face of the column. 

Interior Columns: 𝐴𝑡𝑟𝑖𝑏 = ℎ𝑐𝑜𝑙
2
 (14) 

Corner Columns: 
𝐴𝑡𝑟𝑖𝑏 =

1

2
ℎ𝑐𝑜𝑙

2
 

(15) 

The incident pressure (Pso) at the critical points on the columns are computed 

relative to the threat using standard approaches of UFC 3-340-02 (DoD 2014) for 

hemispherical surface blasts of TNT. The incident pressure is computed from the scaled 

distance, Z in Equation (16), where R is the standoff distance in meters, and W is the mass 

of TNT in kg. 

 𝑍 =
𝑅

𝑊
1
3

  (16) 
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Figure 6 - Elevation view of a building frame showing possible column tributary area 

geometries (A-E) and damage assessment locations 

The reflected pressure and reflected impulse are then calculated at each column by 

considering the orientation of the threat on the ground to each column. The angle of 

incidence between the explosive and each point on the building is used to account for 

reductions in the reflected pressure and impulse magnitudes. The angle of incidence can 

range anywhere between 0-90° with 0° implying a reflected pressure load applied normal 

to the building and 90° a side-on pressure equivalent to the incident pressure. UFC 3-340-

02 defines the reflected coefficient, Cr, as the ratio of the reflected versus the incident 

pressure and is a function of the angle of incidence. A visual representation of angle of 

incidence geometry is shown in Figure 7 with an arbitrarily chosen x, y, z coordinate system 
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relative to the corner column base. The horizontal distance from the grid origin to the point 

of interest on the structure is xi; xBOMB is the horizontal distance from the grid origin to 

the charge location; yi is the vertical distance from the charge location to the point of 

interest; yBOMB is the vertical distance from the grid origin to the charge location; Rg is 

the standoff distance normal to the building face; and Rspace is the direct distance from 

the charge location to the point of interest on the building and is used for calculating the 

standoff. 

In this model, two angles of incidence are considered. The first, labeled α in Figure 

7 and calculated using Equation (17), accounts for both the horizontal and vertical reflected 

angle, combined into one angle in space. The angle α is used for evaluation of the flexure 

and direct shear modes discussed later in the paper. The second angle, α’ (Equation (18)), 

is used when analyzing the breach failure mode and only considers the vertical reflected 

angle. Unlike flexure and shear, breach behavior is not dependent on the orientation of a 

specific geometric axis but rather the gross cross section of the column. Consequently a 

conservative approach is made to assess the breach hazard relative to only the vertical angle 

of incidence. The two angles are used to develop two separate distributions of reflected 

pressure and impulse on the building surface. 

 
𝛼 = tan−1

√|𝑥𝑖 − 𝑥𝐵𝑂𝑀𝐵|2 + |𝑦𝑖 − 𝑦𝐵𝑂𝑀𝐵|2

𝑅𝑔
 

(17) 

 
𝛼′ = tan−1

|𝑦𝑖 − 𝑦𝐵𝑂𝑀𝐵|

√𝑅𝑔2 + |𝑥𝑖 − 𝑥𝐵𝑂𝑀𝐵|2
 

(18) 
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Figure 7 - Geometry relative to building surface for calculation of angle of incidence 

Step 4: Damage Assessment 

The occurrence of breach is assessed first for each column by comparing the Pr and 

Ir measured at the bottom of each column to the breach capacity of that column. If the 

capacity is exceeded, then the column is designated as breached and effectively “removed” 

from contributing to the performance of the frame. If breach does not occur, the column is 

evaluated for flexure and direct shear by comparing the combined P-I capacity curves with 

the Pr and Ir measured at the mid-height of each column. The damage level of each column 

is then determined based on its response level, and the contour of all column damage is 

plotted to show the extent and severity of damage. This process can be repeated for a series 

of blast threats (i.e. for a range of charge weights at varying standoffs) to obtain an envelope 

of the damage distribution. A numerical example for developing an envelope is provided 

in the following case study. 
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Step 5: Quantification of Structure Robustness 

After the spatial distribution of column damage has been determined, the structure 

can then be evaluated for resistance to progressive collapse. For each damage scenario, a 

robustness index for the building can be calculated. The robustness measures the collapse 

resistance of the building relative to both the loads for which it was designed as well as its 

undamaged capacity. Using this simplified approach, the level of load at which the 

structure collapses can be conveniently assessed based on its characteristics and required 

loading demand. 

The first step in calculating the robustness of the building is to impart the deflection 

corresponding to the appropriate damage level at each column as an out-of-plane 

displacement. Although the column deformations resulting from both flexural and direct 

shear demands are measured, each initial column out-of-plane displacement will be 

rounded up to the next flexural response limit as a conservative estimate. Future studies 

will consider the effect of direct shear deformations on the flexural capacity of the section. 

To assess the in-plane behavior of a damaged moment frame building, the out-of-

plane deformations are used to calculate the resulting out-of-plane P-Delta moment on each 

column. This moment, M, will be calculated using Equation (19) where P is the axial load 

in the column of interest and Δ is the blast-induced out-of-plane displacement at each 

column. The P-Delta moment is used to determine the residual in-plane moment-axial force 

interaction curve of each column. This is done by first generating the interaction surface of 

axial load and biaxial bending (i.e. PMM surface) for each column type. The 3D surface 

can then be sliced at the corresponding value of P-Delta along the out-of-plane axis leaving 
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the in-plane axial-moment interaction curve. An example of the interaction surface slicing 

is detailed later in the paper. 

To assess the behavior of the damaged structure, a 2D finite element model can be 

generated. A nonlinear pseudo-dynamic analysis is used to determine the maximum 

response of the damaged building to increasing levels of dead and live floor loads. A 

uniform pushdown method of load application is recommended for this framework where 

the factored dead and live floor loads are amplified by a factor, γ as shown in Equation (20) 

where DL and LL are the unfactored dead and live floor loads, respectively, until collapse 

ensues. It is assumed that during the blast loading, all beams were restrained against out-

of-plane bending due to their connection to the floor diaphragm. 

 𝑀 = 𝑃 × ∆ (19) 

 𝑇𝑜𝑡𝑎𝑙 𝐹𝑙𝑜𝑜𝑟 𝐿𝑜𝑎𝑑 =  𝛾(1.2𝐷𝐿 + 0.5𝐿𝐿) (20) 

The nonlinear pseudo-dynamic analysis approach involves the definition of plastic 

hinge properties for all columns and beams within the structure. For the columns, the 

moment and axial force in the member is compared with its in-plane axial-moment 

interaction curve. The column hinge forms once its response reaches the interaction 

capacity curve. For the beams, moment capacity is plotted against the end rotation of the 

member. Input parameters for the plot are defined and quantified in ASCE (2007) and are 

a function of the cross-section properties of the member. Acceptance criteria is also defined 

as three levels of hinge rotation, each representing a level of damage to the structure. These 

criteria and their qualitative definitions are shown in Table 3below. For this framework, 
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the structure as a whole is deemed to have collapsed when the first collapse prevention 

(CP) hinge forms in a beam within the frame. It is important to note that when comparing 

the relative severity of several different damage scenarios that consistent acceptance 

criteria and collapse mechanisms be used throughout. 

Table 3 - Moment-rotation response acceptance criteria 

Acceptance Criterion Acronym Description 

Immediate Occupancy IO 
Maximum allowable rotation to allow 

for immediate occupancy of building 

following damage event. 

Life Safety LS 
Maximum allowable rotation to 

provide adequate protection against 

occupants in building. 

Collapse Prevention CP 
Rotation level at which collapse of the 

member will ensue following a 

damage event. 

 

To quantify the resistance of the structure to progressive collapse following the 

exposure of blast-induced loads, a relative robustness index (RRI) approach developed by 

Fallon et al (2016) was adopted for this framework. In this approach, uniform floor load 

pushdown is used to calculate the progressive collapse resistance of a damaged building 

relative to its undamaged state under its intended design loads. The RRI number for a given 

building can be determined by first performing the uniform pushdown on an undamaged 

building simply by amplifying its design loads until collapse (i.e. the formation of a CP 

hinge in a beam) is reached. The floor load amplification factor at collapse, noted as 

λundamaged, is then recorded. It should be noted that a dynamic increase factor for the loading 

was not used in this study. This was to maintain consistency in calculating the robustness 

index between damage scenarios with and without column removals. Future phases of this 
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study will explore the effect of the dynamic increase factor on the collapse mechanisms for 

this type of analysis. The uniform floor load pushdown procedure is then repeated for the 

damaged structure until it experiences collapse, and its corresponding amplification factor 

is recorded as λdamaged. The resulting RRI for the damaged structure can then be calculated 

using Equation (21). The value of RRI for a given building and damage scenario can then 

be compared with the same building exposed to a different damage scenario to assess their 

relative consequences. 

 
𝑅𝑅𝐼 =  

𝜆𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 1

𝜆𝑢𝑛𝑑𝑎𝑚𝑎𝑔𝑒𝑑 − 1
 

(21) 

CASE STUDY: 10-STORY REINFORCED CONCRETE BUILDING FRAME 

A prototype reinforced concrete framed office building, based on that used in a 

previous study by Lew et al. (2011), is used to demonstrate the applicability of the proposed 

framework. Steps 1 through 4 of the proposed framework shown in Figure 2 are 

implemented to evaluate the extent of damage caused by a range of blast threats. 

Case Study Step 1: Design 

The building was designed with intermediate moment frames for conventional 

loads and for seismic loads in accordance with Seismic Design Category (SDC) C (ASCE 

2010; ICC 2012). The long dimension exterior frame, consisting of 10 stories with a total 

height of 37.49 m (123 ft), is examined this case study. A front face elevation view is shown 

in Figure 8a. All columns were spaced 9.14 m (30 ft) on center and two column heights 

were used: a ground to first floor height of 4.57 m (15 ft) and all story heights above equal 

to 3.66 m (12 ft). Normal weight concrete with a unit weight of 23.6 kN/m3 (150 lb/ft3) and 

a nominal compressive strength of 27.6 MPa (4000 psi) was specified. All columns in the 



www.manaraa.com

 

30 

frame have the same reinforcement and cross-section and are reinforced with sixteen #32 

Grade 420 (#10 Grade 60) bars as shown in Figure 8b. A dynamic increase factor of 1.19 

and 1.17 is used for concrete compressive strength and rebar yield strength, respectively, 

to account for material strengthening at high strain rates. 

 
Figure 8 - Prototype RC building frame: (a) front face elevation and (b) typical column 

section details 

Case Study Step 2: Capacity Assessment 

The breach threshold curves for the prototype columns calculated using Equations 

(1)-(3), are shown in Figure 9. The flexural resistance functions are obtained using standard 

resistance calculations for reinforced concrete (DoD 2014). The effect of axial load is 

included based on the P-M interaction diagram. Consequently, as axial force increases in 

descending stories due to cumulative tributary floor loads, the magnitude of the flexural 

resistance increases. This effect is illustrated by comparison of the flexural resistance of 

the interior and corner 2nd and 10th story columns in Figure 10. Based on the column 

geometry and material properties, the response limits for direct shear were calculated using 

Equations (5) through (11). The calculated shear resistance, RDSi, without the consideration 
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of applied axial load at each critical level of direct shear slip, ΔDSi, is shown in Table 4. 

When the axial load is included, the shear strength is magnified to a value R’DSi. The 

increase in strength as a function of story number is shown in Figure 11. It is conservatively 

assumed that the deformation limits do not change as a function of axial loading. 

 
Figure 9 - Breach threshold curves for prototype building column 

 
Figure 10 - Flexural resistance functions for corner and interior columns on floors 2 and 

10 
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Table 4. Direct shear response limits without consideration of applied axial load 

Response Label RDSi (MPa) ΔDSi (mm) 

DS1 1.158 0.11 

DS2 2.044 0.30 

DS3 2.044 0.61 

DS4 1.447 3.51 

DS5 1.447 115 
 

 
Figure 11 - Axial load magnification factor for direct shear resistance as a function of 

frame story 

The flexural P-I capacity diagrams are determined for interior and exterior columns 

at each story. Tributary areas for interior and corner columns were calculated using 

Equations (14) and (15), respectively. Boundary conditions are assumed to be fixed-simple 

for this example. This set of boundary conditions was chosen as an approximation of 

resistance that falls between two extrema: simple-simple as an upper bound and fixed-fixed 

as a lower bound for estimating deflections (and vice versa for estimating shear reactions). 

Alternate boundary conditions could be used based on the detailing of the system. All 
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column types were analyzed as undamped, and both initial displacements and velocities 

were set equal to zero. The resistance functions for flexure (shown in Figure 10) and direct 

shear (as depicted in Figure 4 using parameters from Table 4 and Figure 11) for corner and 

interior columns at each story were used to develop P-I capacity curves. A total of twenty 

sets of P-I capacity curves were generated to capture the variety of column heights, axial 

loads and tributary areas in the building. Four of the P-I diagrams are shown for comparison 

in Figure 12: (a) interior column, story 2; (b) interior column, story 10; (c) corner column, 

story 2(c); and (d) corner column, story 10. 
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Figure 12 - Combined flexure and direct shear P-I diagrams: (a) interior story 2, (b) 

interior story 10, (c) corner story 2, and (d) corner story 10 
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Case Study Step 3: Hazard Assessment 

For this case study two hazard scenarios are examined. In scenario A, the threat 

size and location are both known. In scenario B, the threat size is known but the location 

varies over a pre-defined region at ground level near the building’s perimeter. 

Hazard scenario A consists of three hazards of increasing charge size: DL1 through 

DL3. The size and location of the charges were chosen to demonstrate the different levels 

of damage that could occur over the building frame. The TNT charge weight (W), standoff 

distance (Rg), and x-axis coordinate of charge location (xBOMB) corresponding to the three 

demand levels are summarized in Table 5. All charges are assumed to be placed on the 

ground (thus yBOMB is equal to zero). DL1 and DL2 charges were placed (along the x-

axis) directly normal to the center of the column face. DL3 was placed halfway between 

column lines. In practice, these threats would be specified by the owner, the governing 

standard, or the results of a threat assessment. The location of the threat would be assessed 

relative to the site layout and the available standoff based on obstructions or operational 

security. 

Table 5. Trial TNT charge weights and standoffs corresponding to building frame 

damage levels 

Building 
Damage 

Level 

No. of Columns 
Removed 

TNT Charge Wt., 
W (kg) 

Standoff Distance, 
Rg (m) 

xBOMB (m) 

DL1 0 226.8 3.05 18.29 

DL2 1 453.6 3.05 18.29 

DL3 2 907.2 6.10 13.72 
 

The reflected pressure and impulse demands for the three scenario A charges were 

determined using the approach previously discussed. For illustration purposes, the P-I blast 



www.manaraa.com

 

36 

demand values are shown as contours over the entire surface of the building from which 

the damage at discrete locations can be assessed. For the proposed threat dependent 

assessment, these values are only needed at the mid-height of the column and at the column 

base. The reflected pressure and impulse are plotted as contours for each hazard for the 

flexure and direct shear assessments in Figure 13. Recall that different P-I measurement 

locations are used for the breach and flexure/direct shear assessments. The breach hazard 

contours for the case of DL3 is illustrated in Figure 14. The horizontal and vertical lines 

represent the framing of the structure and the squares represent the locations on each 

column where the damage assessment is made. Comparing the DL3 hazard for breach and 

flexure/shear it is evident that utilizing just the vertical angle of incidence for the case of 

breach provides a conservative estimate of the hazard. 
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Figure 13 - Reflected pressure and impulse contours for flexure and direct shear modes 

plotted on building surface for the three threat scenarios 
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Figure 14 - Reflected pressure and impulse contours for breach plotted on building 

surface for the DL3 threat scenario 

Hazard scenario B consists of three conventional charge sizes. This includes an 

11.34 kg (25 lb.) satchel size explosive, a 99.79 kg (220 lb.) small vehicle borne improvised 

explosive device (S-VBIED), and a larger VBIED (L-VBIED) 907.2 kg (2000 lb.) bomb. 

In this set of trials, each of the charges was located on the ground over a region in front of 

the structure. The region of threat is assumed to be bounded by the corner of the building 

and center of the building face and standoff distances ranging from 3.05 to 24.4 m (10 to 

80 ft.) as illustrated in Figure 15. For this case study the assumption is made that a protected 

space exists 3.05 m (10ft) from the face of the building. The 24.4 m (80 ft) extent was 

selected based on recommended design criteria from UFC 4-010-01 (DoD 2013a), which 

denotes that tradeoffs between standoff distance and building component construction will 

generally need to be analyzed when standoff distances are less than 25 m (82 ft.). The 

demand on the first floor columns were determined for each charge located at points 

distributed at 0.3 m (1ft) spacing over the threat region. 
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Figure 15 - Isometric view of prototype building frame showing grid used for generating 

standoff contours for first floor column damage 

Case Study Step 4: Damage Assessment 

Damage is assessed for the two hazard scenarios: (1) damage on the building for a 

given threat size at a given location, and (2) damage on the first floor columns for a given 

threat size at various locations in front of the building. The first hazard scenario is used to 

illustrate the extent of damage that can occur to columns over the height of the building. 

The second hazard scenario is used to illustrate the standoff distances needed to prevent 

multiple column damage. Damage levels for the two scenarios and threat sizes and 

locations are determined by comparing the blast-induced pressure and impulse values to 

the respective P-I capacity curves for each column. 

Hazard Scenario A: Known Threat Location 

The resulting damage states for all columns for each hazard are mapped onto the 

building. The analysis is conducted first by considering axial demands on the flexural 

response of the columns and again by neglecting axial effects. As mentioned earlier, for 
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the prototype reinforced concrete columns, the axial force will increase the flexural 

strength but may decrease the resistance as P- effects become significant due to large 

deflections. A comparison of these cases can be used to examine the sensitivity of axial 

effects on the damage distribution through the structure. 

To simplify the illustration of damage on the building frame, the 

breach/flexure/direct shear response limits are combined to develop a comprehensive 

damage scale ranging from level 1 to 11. The levels are chosen to represent the regions 

between the P-I capacity curves (see Figure 12d). Level 1 corresponds to minimal damage 

while level 11 corresponds to breach of the column. As shown in Figure 12, the shear 

modes control the lower damage levels followed by an intermixing of shear and flexure 

response levels and ending with breach. The damage levels 1 through 11 are summarized 

in the legend of Figure 16 relative to the flexure, direct shear, and breach response limits. 

The levels were chosen based on increasing impulse and pressure and are specific to the 

system under investigation. The damage level maps for the case study are illustrated on the 

building frame in Figure 16. 

The hazard scenario A resulted in distribution of damage over multiple columns on 

the building face. The overall damage increases with the increasing hazard levels (DL1, 

DL2, and DL3). Hazard DL1 results in damage level 8 in one column and level 5 in 

adjacent columns when axial load is considered. This correlates to high flexural and shear 

damage in the first floor column and moderate shear and low flexural damage to all the 

adjacent columns. Each hazard results in damage to multiple columns. This is in contrast 

to the APM which notionally removes one column and assumes all other columns are 

undamaged. This spread of damage to multiple columns within a frame could potentially 
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compromise its structural integrity. Similar damage distribution occurs for the other hazard 

cases. DL2 results in breach of one column and moderate damage to adjacent members. 

DL3 results in breach of two adjacent columns and moderate damage over a large region 

of the building face. These results indicate that a threat dependent damage assessment may 

be warranted for moderate blast loads. 
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Figure 16 - Building frame damage map 

In this study, accounting for axial load effects on the columns improves the damage 

resistance of the frame when subjected to blast demands. Figure 16 compares the level of 
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damage to the columns when axial effects are included and when they are not for the three 

demand levels DL1, DL2 and DL3 (compare (a) to (b), (c) to (d), and (e) to (f)). The 

inclusion of axial effects reduces both the spread and level of damage over the face of the 

building. This effect is clearly illustrated in the reduction of first floor column damage 

under the DL2. 

Hazard Scenario B: Variable Threat Location 

For cases where the specific threat location is not known, a damage assessment can 

be conducted over a region of potential charge locations. The damage generated by the 

three aforementioned charge sizes was determined at numerous locations within a region 

near the building perimeter. The satchel size was used to assess the vulnerability of the 

structure to a very close-in demand, potentially detonating near the lower portion of a 

critical column. The S-VBIED is useful for simulating more widespread pressure and 

impulse demands on the face of the building from a larger standoff distance. The L-VBIED 

was implemented to assess the vulnerability of the structure to large pressure and impulse 

demands and was used to assess the state of the structure when suffering significant, 

widespread structural damage. 

The damage states for the first floor columns were determined for each charge size 

based on the varying standoff distances. These standoff contours are illustrated in Figure 

17 for the three charge sizes: (a) L-VBIED, (b) S-VBIED, and (c) satchel charge relative 

to the positions of the first floor columns on lines A, B, and C. The arrow shown in Figure 

15 shows the view perspective for the plots of Figure 17. The contours in Figure 17 are 

only plotted on half the ground surface grid since the building is symmetrical (thus the 
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contours for columns on lines D, E, and F will be the same as those for columns on lines 

C, B, and A, respectively). 

The results of these trials illustrate the relationship between charge location and 

multiple column damage. For the case study structure, the columns subjected to the satchel 

type explosive are limited to level 3 damage (see Figure 17c), and damage occurs only for 

close-in locations.  Due to the small size of the explosive, no threat location produces 

damage to more than one column at a time. As the charge size is increased to that of the S-

VBIED, damage to multiple columns can occur for a range of charge locations. For 

example, if the S-VBIED is placed at the location of the star in Figure 17b, first floor 

columns on lines A, B, and C would experience damage levels of 1, 5, and 2, respectively. 

The column damage interaction becomes very pronounced for the L-VBIED, for which 

specific locations can result in breaching (and thus removal) of two columns along with 

significant damage to other adjacent columns (see Figure 17a). 



www.manaraa.com

 

45 

 
Figure 17 - Plan views of standoff contours for first floor column damage levels for three 

charge sizes: (a) L-VBIED, (b) S-VBIED, and (c) satchel 
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These damage contours are used to develop standoff distance boundaries for critical 

response limits. The minimum standoff distance for all columns in the frame to remain 

undamaged, i.e. below the DS1 limit state, is 6.10 m (20.0 ft.) and 14.38 m (47.19 ft.) for 

the satchel and S-VBIED charge sizes, respectively. For the L-VBIED charge size, the 

maximum standoff distances are 18.03 m (59.14 ft.), 7.25 m (23.79 ft.), and 5.73 m (18.79 

ft.) for B2 response limit, breaching of only one column, and breaching of two columns, 

respectively. The ground surface contours create damage level envelopes that can be used 

in the preliminary design phase of the building to assess the risk of damage for a given 

standoff distance or for existing structures to determine recommended locations for secured 

standoff fences. 

Case Study Step 5: Quantification of Structure Robustness 

In order to quantify the effects of the threat-dependent damage scenarios on the 

collapse resistance of the prototype building frame, a nonlinear pseudo-dynamic 

progressive collapse analysis was performed using SAP2000 (CSI 2014). The pseudo-

dynamic approach allows the user to slowly amplify the gravity floor loads as a function 

of time in order to monitor the development of hinge mechanisms and capture the 

amplification factor at the collapse load. To simulate the static loading case, the load was 

applied over a very long time period in order to eliminate any sort of vibration response of 

the structure. As mentioned earlier, collapse of the frame was dictated by the development 

of the first collapse prevention (CP) hinge in a beam. 

The exterior beams in the prototype structure and adopted from Lew et al (2011) 

have dimensions of 71.1 cm (28 in.) in width and 50.8 cm (28in) in depth. The end zones 

of the beam (i.e., the negative moment region) consist of (9) #29 Gr. 420 (#9 Gr. 60) bars 
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at the top (tension steel) and (3) #29 Gr. 420 bars at the bottom (compression steel). Stirrups 

consist of two legs of #13 Gr. 420 (#4 Gr. 60) bars spaced 10.2 cm (4 in.) on center up to 

106.7 cm (42 in.) away from the column face. Since the concrete in the structure is 

monolithic, the beams exhibit a compressive strength of 27.6 MPa (4000 psi) as seen also 

in the columns. A schematic of the beam end zone geometry and reinforcement detailing 

is shown in Figure 18 below. 

 
Figure 18 - Typical prototype building frame moment connection details 

To develop the moment-rotation relationships for the beam end zone hinges, the 

cross-section properties were used to select the parameters a, b, and c and acceptance 

criteria from ASCE (2007). Figure 19 shows the moment-rotation plots for the given beam 

section with the acceptance criteria defined in Table 3 also shown on the curve. The 

evaluation of column overloading was also performed using the assignment of hinges in 

the column end zone regions. The column hinges were defined using the residual in-plane 
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moment-axial force interaction curve resulting from the slice of the three dimensional axial 

force and biaxial moment (PMM) interaction surface. To generate the surface, a two 

dimensional fiber section analysis model was developed. The column cross section was 

discretized into 256 square fibers, 28 along each edge, with side dimensions all equal to 

2.54 cm (1 in.) as shown in Figure 20. Each point of the PMM curve corresponds to a given 

neutral axis depth, c, and angle of rotation, θ, as depicted in Figure 20. The three 

dimensional PMM surface generated for the columns in the prototype structure is shown 

in Figure 21. The PMM surface was then sliced at the appropriate out-of-plane P-Delta 

moment resulting from the blast damage, thereby producing the residual in-plane PM 

interaction curve for each column at its respective damage level. 

 
Figure 19 - Moment rotation modeling curve and acceptance criteria 
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Figure 20 - Column represented as a two dimensional cube fiber section 

 
Figure 21 - Three dimensional PMM surface for columns in prototype frame 
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Four different damage scenarios of the prototype building were compared in this 

case study. The full, undamaged structure with no column removals, was used as the 

control for calculating the RRI for the damage states. The second scenario was the structure 

exposed to the DL1 damage map (see Figure 16b) created in Hazard Scenario A of Step 4. 

The third entailed the notional single column removal without any damage to adjacent 

columns. And finally, the fourth scenario involved the structure being subjected to the DL2 

damage map (see Figure 16d). The condition DL3 (see Figure 16f), where the blast load 

resulted in the removal of two columns, was not considered in the robustness calculations 

as the stability of the structure would not be achievable at the onset of the uniform 

pushdown analysis. It should be noted, however, that the DL3 scenario is achievable for a 

range of large threat sizes and may be warranted for consideration when planning the 

design of the building and its surrounding site layouts. This scenario can potentially be 

mitigated by increasing standoff distances or by strengthening the columns as needed. 

A comparison of the reduced in-plane moment-axial force interaction curves for the 

prototype column at the three levels of damage is shown in Figure 22. Columns with L8 

and L5 damage result from the DL1 scenario as shown in Figure 16b and columns with L5 

and L6 damage levels are present in the DL2 case as seen in Figure 16d. Recall that L11 

damage is considered as a removal for the DL2 scenario. Also, the L2 damage levels 

mapped on column line C in Figure 16b and d were not considered for the pushdown 

analysis since they represented only a small amount of direct shear slip near the column 

supports. Further research by the author will investigate the effects of direct shear 

deformations on the residual axial capacity of the columns. These reduced curves were 

then used as input for the column hinges in the nonlinear pseudo-dynamic model. 
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Figure 22 - Comparison of reduced in-plane moment-axial force interaction curves for the 

prototype column for three damage cases 

After performing a uniform floor load pushdown for all four damage scenarios, the 

RRI values for each case were calculated and compared with one another. The undamaged 

building frame saw the development of its first CP beam hinge at a floor load amplification 

factor (λundamaged) equal to 5.55. This results in a baseline RRI of 1 for the undamaged 

structure following the approach presented by Fallon et al (2016). The DL1 damage 

scenario collapsed at a floor load amplification factor (λdamaged) equal to 4.31 and 

comparing to the value of λundamaged yields a RRI of 0.726 for that case. The notional single 

column removal case developed a CP beam hinge at a value of λdamaged equal to 0.896 

resulting in a RRI of -0.023. Finally, the DL2 damage scenario also collapsed at λdamaged 

equal to 0.896 corresponding to a RRI value of -0.023. The negative RRI value indicates 

that the damaged structure cannot support its intended design loads. The extent of damage 

to the structure at collapse represented by the formation of plastic hinges is shown in Figure 
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23a and 23b for the undamaged and single column removal cases, respectively. Beam 

hinges that have reached the CP acceptance level are shown in yellow. Red hinges indicate 

where a column has exceeded its axial capacity and thus has begun to rapidly displace 

downward. 

These results show that the distribution of damage to the frame without any column 

removals reduces the RRI when compared to that of the completely undamaged frame by 

approximately 28%. The notional single column removal case and the scenario where a 

column is removed with adjacent damage both result in the same RRI. This can be 

attributed to the failure mechanisms developing faster in the bays above the removal than 

the axial load redistribution to the adjacent columns. A few design changes may influence 

the level of load at which the primary failure mechanism changes from the development of 

CP hinges in the beam to overload of the adjacent columns. Most notably, an enhancement 

of the moment connection strength can delay the formation of CP hinges, and thus 

redistributing additional axial load to the adjacent columns. Also, a reduction in the 

capacity of the adjacent column can allow for its overload to occur sooner. For this case 

study, it was determined that for the mechanism to shift, either the moment connection 

strength would need to be amplified by a factor of 3 or the adjacent column would exhibit 

a residual axial capacity of less than 3,559 kN (800 kips). Also, buildings not specifically 

detailed for seismic regions may also exhibit lesser resilience to progressive collapse. 
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Figure 23 - Extent of plastic hinge formation at collapse for the undamaged case (a) and 

the one column removal (b) 
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SUMMARY AND CONCLUSIONS 

This paper presents a framework for mapping blast-induced damage both as 

contours on the surface of a reinforced concrete building frame and as standoff boundaries 

on the site surrounding the structure to assess the damage to the exterior load carrying 

system. These threat-dependent damage maps can be used as part of a coupled progressive 

collapse vulnerability assessment of structures. The contours are a visual representation of 

the blast-induced damage levels and are a function of reflected pressure and impulse 

loading and the material and geometric properties of the concrete columns. This model can 

be used to evaluate the final damage state of the critical column locations for flexure, direct 

shear, and breach failure modes. By visually assessing the damage contours and their 

boundaries relative to the location of critical columns within the building frame, the extent 

of blast-induced damage to all columns can be evaluated. The number of columns to be 

removed when analyzing the progressive collapse potential of a building frame depends on 

how many column lines fall within the breach or blowout failure contours. Utilizing the 

developed methodology, one can demonstrate the potential for multiple column removals 

for a range of explosive threats. 

A case study was performed to illustrate the applicability of the proposed 

framework. A 10-story prototype reinforced concrete moment frame building was 

subjected to blast-induced pressure loading for a range of explosive threats, and the 

response of all perimeter columns was evaluated. A set of hazards was examined, 

representing a range of TNT charge sizes and standoff distances. A second set of trials 

varied the standoff location of three different charge sizes on the ground surface in front of 

the building frame. 
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When the prototype building frame was subjected to the spatial distribution of blast-

induced damage for set of hazards, it was shown that the building exhibits a reduction in 

overall robustness when compared to the building that is completely undamaged. The same 

robustness was exhibited for both cases of the notional single column removal approach 

(with and without adjacent damage) due to the development of CP hinges in the beams 

above the removal. 

The results of this study indicate that when coupled with the effects of blast loading, 

the current alternate path method for progressive collapse analysis (which utilizes the one 

column removal approach) may be non-conservative for a relatively wide range of 

explosive threat sizes and locations. The damage contours show that multiple columns can 

suffer breach when subjected to large charge sizes at small standoff distances. Cases where 

a single column is removed are shown to also result in significant damage to adjacent 

columns. Even in cases where no columns are removed, significant damage can occur to 

the building frame, potentially compromising its structural integrity and collapse 

resistance. This study suggests that a threat-dependent approach may enable the design of 

high-risk facilities to the levels of robustness needed to resist realistic consequences of 

blast-induced damage.  
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